Revision Checklist: GCSE AQA Physics (Higher Tier)

	1. ENERGY	Subject Knowledge (how well do I know this)	Practice (quiz/exam questions)
a.	Energy stores		
b.	Changes in energy		
c.	Kinetic energy		
d.	Gravitational & elastic		
	potential energy		
e.	Specific heat capacity		
f.	Power & work done		
g.	Conduction		
h.	Unwanted energy		
	transfers		
i.	Efficiency		
j.	Energy resources		
	(renewable & non-		
	renewable)		
k.	Energy resources		
	(environmental impact)		

		Knowledge	Practice
	2. ELECTRICITY	Kilowieuge	Practice
a.	Circuit diagram symbols		
b.	Charge & current		
c.	Current, resistance &		
	potential difference		
d.	I-V characteristic curves		
e.	LDR & thermistor		
f.	Series & parallel circuits		
g.	D.C. & A.C.		
h.	Mains electricity		
i.	Power in circuits		
j.	Energy transfers in electrical		
	appliances		
k.	The national grid		
I.	Role of transformers		
m.	Static electricity		-
n.	Electric fields		

	3. PARTICLE MODEL OF	Knowledge	Practice
	MATTER		
a.	Density		
b.	Changes of state		
c.	Internal energy		
d.	Specific heat capacity (again)		
e.	Specific latent heat		
f.	Particle motion in gases		
g.	Pressure & volume of gases		
h.	Work done on a gas		

	4. ATOMIC STRUCTURE	Knowledge	<u>Practice</u>
a.	Structure of an atom		

b.	Mass/atomic number &	
	isotopes	
c.	Development of atomic	
	model	
d.	Radioactive decay	
e.	Properties of nuclear	
	radiation	
f.	Nuclear equations	
g.	Half life	
h.	Contamination & irradiation	
i.	Background radiation	
j.	Half-life & hazards	
k.	Uses of nuclear radiation	
I.	Nuclear fission	
m.	Nuclear fusion	

	5. FORCES	Knowledge	<u>Practice</u>
a.	Scalars & vectors		
b.	Contact & non-contact forces		
c.	Gravity & weight		
d.	Resultant forces		
e.	Vector diagrams		
f.	Work done		
g.	Springs & elasticity		
h.	Moments		
i.	Pressure in a fluid		
j.	Pressure in a column of		
	liquid		
k.	Upthrust		
I.	Atmospheric pressure		
m.	Distance & displacement		
n.	Speed & velocity		
0.	Distance-time graphs		
p.	Acceleration		
q.	Velocity-time graphs		
r.	Terminal velocity		
s.	Newton's first law		
t.	Newton's second law &		
	inertia		
u.	Newton's third law		
v.	Stopping distance & reaction		
	time		
w.	Factors affecting braking		
	distance		
x.	Momentum		
y.	Car safety features		

	6. WAVES		<u>Knowledge</u>	<u>Practice</u>
a.	Transverse & longit	udinal		
	waves			
b.	Properties of wa	ves		
C.	Reflection			
d.	Refraction			

e.	Ray diagrams (reflection & refraction)	
f.	Sound waves	
g.	Waves for detection &	
	exploration	
h.	Electromagnetic (EM)	
	spectrum	
i.	Radio waves	
j.	Risks of EM radiation	
k.	Uses of EM waves	
I.	Ray diagrams (lenses)	
m.	Visible light	
n.	Infrared radiation	
0.	Black bodies & radiation	

	7. MAGNETISM &	Knowledge	<u>Practice</u>
	ELECTROMAGNETISM		
a.	Bar magnets		
b.	Magnetic fields		
c.	Electromagnets		
d.	The motor effect & Fleming's		
	left-hand rule		
e.	Electric motors &		
	loudspeakers		
f.	The generator effect		
g.	Alternators & dynamos		
h.	Microphones		
i.	Transformers		

	8. SPACE PHYSICS	Knowledge	<u>Practice</u>
a.	Our solar system		
b.	The life cycle of a star		
c.	Orbital motion		
d.	Natural & artificial satellites		
e.	Red shift		
f.	The big bang theory		

PRACTICALS	<u>Knowledge</u>
RP 1: "An investigation to determine the	
specific heat capacity of one or more	
materials."	
RP 2: "Investigate the effectiveness of	
different materials as thermal insulators,	
and factors that affect the thermal	
insulation properties of a material."	
RP 3a: "Investigate how the length of a	
wire at constant temperature affects the	
resistance of electrical circuits."	
RP 3b: "Investigate how combinations of	
resistors in series and parallel affect the	
resistance of electrical circuits."	
RP 4: "Use circuit diagrams to investigate	
the I-V characteristics of a filament lamp,	
a diode and a resistor at constant	
temperature."	

RP 5: "Determine the densities of regular and irregular solid objects and liquids."	
RP 6: "Investigate the relationship	
between force and extension of a spring."	
RP 7: "Investigate separately how varying the force and mass of an object affect its acceleration."	
RP 8: "Measure the frequency, wavelength and speed of waves in a ripple tank, and waves in a solid."	
RP 9: "Investigate the reflection of light off different surfaces, and the refraction of light by different substances."	
RP 10: "Investigate how the amount of infrared radiation absorbed and radiated changes depending on the type of surface."	

EQUATIONS (not given in exam)	
Weight = mass x gravitational field strength	W = m g
Work done = force x distance	W = F s
Force (applied to a spring) = spring constant x	F = k e
extension	
Moment = force x distance (between pivot and	M = F d
line of action of force)	
Pressure = $\frac{\text{normal force}}{\text{area}}$	$p = \frac{F}{A}$
Distance = speed x time	s = v t
Acceleration = change in velocity time	$a = \frac{\Delta v}{t}$
Resultant force = mass x acceleration	F = m a
Momentum = mass x velocity	p = m v
Kinetic energy = 0.5 x mass x (speed) ²	$E_K = \frac{1}{2} \text{ m v}^2$
Gravitational potential energy = mass x	E _P = m g h
gravitational field strength x height	
Power = energy transferred time	$P = \frac{E}{t}$
Power = work done time	$P = \frac{E}{t}$ $P = \frac{W}{t}$
Efficiency = useful energy out total energy in	
Efficiency = $\frac{\text{useful power out}}{\text{total power in}}$	
Wave speed = frequency x wavelength	$v = f \lambda$
Charge = current x time	Q = I t
Potential difference = current x resistance	V = I R
Power = potential difference x current	P = V I
Power = (current) ² x resistance	$P = I^2 R$
Energy transferred = charge x potential	E = Q V
difference	
Density = mass volume	$\rho = \frac{m}{V}$

ASSESSMENTS	<u>Duration</u>	<u>Marks</u>	<u>Topics</u>
Paper 1	1 hour 45 minutes	100 marks	Topics 1-4
Paper 2	1 hour 45 minutes	100 marks	Topics 5 - 8